Understanding the spread of infectious diseases

Scientists worldwide have been working flat out on research into infectious diseases in the wake of the global outbreak of the COVID-19 disease, caused by the new coronavirus SARS-CoV-2. This concerns not only virologists, but also physicists, who are developing mathematical models to describe the spread of epidemics. Such models are important for testing the effects of various measures designed to contain the disease such as face masks, closing public buildings and businesses, and the familiar one of social distancing. These models often serve as a basis for political decisions and underline the justification for any measures taken.
At the beginning of the corona pandemic, they realised that the same method is useful for describing the spread of diseases. In principle, people who observe social distancing can be modelled as particles which repel one another because they have, for example, the same electrical charge explains lead author Michael te Vrugt. So perhaps theories describing particles which repel one another might be applicable to people keeping their distance from one another. They developed the so-called SIR-DDFT model which combines the SIR model a well-known theory describing the spread of infectious diseases with DDFT. The resulting theory describes people who can infect one another but who keep their distance. The theory also makes it possible to describe hotspots with infected people, which improves our understanding of the dynamics of so-called super-spreader events earlier this year such as the carnival celebrations in Heinsberg or the après-ski in Ischgl.
Regards
ALEX JOHN
Editorial Assistant
Journal of infectious disease and dignosis