Artificial intelligence that helps computers understand, interpret and manipulate human language

Image

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyse large amounts of natural language data. The result is a computer capable of ‘understanding’ the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Up to the 1980s, most natural language processing systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing. This was due to both the steady increase in computational power (see Moore's law) and the gradual lessening of the dominance of Chomskyan theories of linguistics (e.g. transformational grammar), whose theoretical underpinnings discouraged the sort of corpus linguistics that underlies the machine-learning approach to language processing.

Many different classes of machine-learning algorithms have been applied to natural-language-processing tasks. These algorithms take as input a large set of "features" that are generated from the input data. Increasingly, however, research has focused on statistical models, which make soft, probabilistic decisions based on attaching real-valued weights to each input feature. Such models have the advantage that they can express the relative certainty of many different possible answers rather than only one, producing more reliable results when such a model is included as a component of a larger system.

A major drawback of statistical methods is that they require elaborate feature engineering. Since the early 2010s, the field has thus largely abandoned statistical methods and shifted to neural networks for machine learning. Popular techniques include the use of word embeddings to capture semantic properties of words, and an increase in end-to-end learning of a higher-level task (e.g., question answering) instead of relying on a pipeline of separate intermediate tasks (e.g., part-of-speech tagging and dependency parsing).

For example, consider some of the meanings, in English, of the word “big”. When used as a Comparative, as in “That is a big tree,” a likely inference of the intent of the author is that the author is using the word “big” to imply a statement about the tree being ”physically large” in comparison to other trees or the authors experience. When used as a Stative verb, as in ”Tomorrow is a big day”, a likely inference of the author’s intent it that ”big” is being used to imply ”importance”.

Regards
Sarah Rose
Managing Editor
International Journal of Swarm Intelligence and Evolutionary Computation